Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[μ-(5,5'-diazenediylditetrazolido)dicaesium]

Yan Meng

School of Environmental Engineering, Chang'an University, South Second Cycle Road 368\#, Xi'an 710064, Shaanxi, People's Republic of China
Correspondence e-mail: myancau@163.com

Received 6 February 2011; accepted 4 March 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.008 \AA$; R factor $=0.031 ; w R$ factor $=0.082$; data-to-parameter ratio $=13.2$.

The asymmetric unit of the title compound, $\left[\mathrm{Cs}_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{10}\right)\right]_{n}$, comprises a Cs^{+}cation, and one-half of a 5,5'diazenediylditetrazolide anion. The Cs^{+}cation is six-coordinated by N atoms from six 5,5'-diazenediylditetrazolide ligands. Each 5,5'-diazenediylditetrazolide ligand is surrounded by $12 \mathrm{Cs}^{+}$cations, coordinating through ten N atoms. The Cs^{+}cations are arranged in a chain along the a-axis direction with a Cs \cdots Cs separation of 4.4393 (10) Å. Such coordination leads to the formation of the three-dimensional framework.

Related literature

For applications of 5,5'-diazenediylditetrazolide salts, see: Hammerl et al. (2001). For the synthesis of sodium 5,5'diazenediylditetrazolide, see: Thiele (1892). For the synthesis and characterization of alkali and alkaline earth metal salts of 5,5'-diazenediylditetrazolide, see: Hammerl et al. (2002); Steinhauser et al. (2009). For Cs-N bond lengths, see: Ebespächer et al. (2009).

Experimental

Crystal data
$\left[\mathrm{Cs}_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{10}\right)\right]$
$M_{r}=429.94$
Monoclinic, $P 2_{1} / c$
$a=4.4393$ (9) А
$b=8.7151$ (17) \AA
$c=11.860(2) \AA$
$\beta=93.83$ (3) ${ }^{\circ}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.135, T_{\text {max }}=0.606$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$	64 parameters
$w R\left(F^{2}\right)=0.082$	$\Delta \rho_{\max }=1.36 \mathrm{e} \mathrm{A}^{-3}$
$S=1.15$	$\Delta \rho_{\min }=-1.47 \mathrm{e} \mathrm{A}^{-3}$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported financially by two grants from the Scientific Research Plan Projects of Shaanxi Education Department (08 J K414, 09 J K702).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2085).

References

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Ebespächer, M., Klapötke, T. M. \& Sabaté, C. M. (2009). New J. Chem. 33, 517-527.
Hammerl, A., Holl, G., Kaiser, M., Klapötke, T. M., Nöth, H., Ticmanis, U. \& Warchhold, M. (2001). Inorg. Chem. 40, 3570-3575.
Hammerl, A., Holl, G., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. \& Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834-845.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Steinhauser, G., Giester, G., Wagner, C., Leopold, N., Sterba, J. H., Lendl, B. \& Bichler, M. (2009). Helv. Chim. Acta, 92, 1371-1384.
Thiele, J. (1892). Justus Liebigs Ann. Chem. 270, 54-63.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Poly ${ }^{\mu} \mu_{-(5,5}{ }^{\prime}$-diazenediylditetrazolido)-dicaesium]

Y. Meng

Comment

Salts of 5,5'-diazenediylditetrazolide are powerful gas generation agents and can be used in gas generators for airbags and fire extinguishing systems (Hammerl et al., 2001). Thiele first prepared sodium 5,5'-diazenediylditetrazolide (Thiele, 1892), which is usually used as the starting material for other 5,5'-diazenediylditetrazolide compounds. Up to now, although many alkali-and alkaline earth metal salts of 5,5'-diazenediylditetrazolide have been prepared (Hammerl et al., 2002; Steinhauser et al.,2009), more work still needs to be done. In this paper, we report the crystal structure of the title compound, (I), a new Cs complex obtained by the reaction of sodium 5,5'-diazenediylditetrazolide and CsCl in water.

The asymmetric unit of the title compound comprises a Cs^{+}cation, and a half of 5,5'-diazenediylditetrazolide anion. The central cation is coordinated to six N atoms from six 5,5'-diazenediylditetrazolide ligands (Fig. 1) with the Cs-N distances ranging from 3.225 (6) Å to 3.341 (5) \AA, which are well within the range reported in the literature (Ebespächer et al., 2009). The atom N 2 from the tetrazole rings acts as μ_{3}-bridge. Thus, each 5,5'-diazenediylditetrazolide anion links twelve Cs^{+} cations through ten nitrogen atoms. The Cs^{+}cations are arranged in a one-dimensional chain along the a-axis direction with the $\mathrm{Cs}^{+}{ }^{\ldots} \mathrm{Cs}^{+}$separation of 4.4393 (10) \AA. Such linking mode leads to the formation of the three-dimensional framework of the title compound (Fig. 2).

Experimental

To a solution of sodium 5,5'-diazenediylditetrazolide in 20 ml bidistilled water, a solution of CsCl was added dropwise at room temperature. After stirring for 30 minutes a yellow solution was obtained after filtration. The filtrate was then set aside for crystallization at room temperature. Three weeks later, yellow block crystals of the title compound suitable for X-ray determination were isolated.

Refinement

All atoms were refined anisotropically. The maximum residual electron density of $1.36 \mathrm{e} \AA^{-3}$ is located $1.11 \AA$ from Cs1 and the minimum density of -1.46 e \AA^{-3} lies $0.83 \AA$ from Cs 1 .

Figures

supplementary materials

Fig. 2. The three-dimensional framework of (I).

Poly[μ-(5,5'-diazenediylditetrazolido)-dicaesium]

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cs}_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{10}\right)\right]} \\
& M_{r}=429.94 \\
& \text { Monoclinic, } P 2_{1} / c \\
& \text { Hall symbol: -P } 2 \mathrm{ybc} \\
& a=4.4393(9) \AA \\
& b=8.7151(17) \AA \\
& c=11.860(2) \AA \\
& \beta=93.83(3)^{\circ} \\
& V=457.82(16) \AA^{3} \\
& Z=2
\end{aligned}
$$

$F(000)=384$
$D_{\mathrm{x}}=3.119 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1601 reflections
$\theta=3.4-25.4^{\circ}$
$\mu=7.94 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.42 \times 0.26 \times 0.07 \mathrm{~mm}$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.135, T_{\text {max }}=0.606$
4146 measured reflections
842 independent reflections
747 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\min }=3.4^{\circ}$
$h=-5 \rightarrow 4$
$k=-10 \rightarrow 10$
$l=-12 \rightarrow 14$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.082$
$S=1.15$
842 reflections

0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0385 P)^{2}+0.5977 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.36 \mathrm{e} \AA^{-3}$

64 parameters

$$
\Delta \rho_{\min }=-1.47 \mathrm{e} \AA^{-3}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cs1	$0.08959(8)$	$0.47092(5)$	$0.19017(3)$	$0.0345(2)$
C1	$-0.2743(12)$	$0.3536(7)$	$0.4829(5)$	$0.0246(13)$
N1	$-0.3813(11)$	$0.3517(6)$	$0.3756(4)$	$0.0320(12)$
N2	$-0.5901(11)$	$0.2386(6)$	$0.3729(5)$	$0.0346(13)$
N3	$-0.6023(13)$	$0.1805(6)$	$0.4744(5)$	$0.0389(14)$
N4	$-0.4029(13)$	$0.2515(7)$	$0.5477(5)$	$0.0379(14)$
N5	$-0.0545(11)$	$0.4536(6)$	$0.5334(5)$	$0.0293(12)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	$0.0288(3)$	$0.0391(3)$	$0.0354(3)$	$-0.00007(16)$	$0.0014(2)$	$0.00540(17)$
C1	$0.022(3)$	$0.026(3)$	$0.026(3)$	$0.005(3)$	$0.001(2)$	$-0.001(3)$
N1	$0.028(3)$	$0.035(3)$	$0.032(3)$	$-0.004(2)$	$-0.001(2)$	$-0.007(3)$
N2	$0.026(3)$	$0.034(3)$	$0.043(3)$	$-0.002(2)$	$0.001(2)$	$-0.009(3)$
N3	$0.031(3)$	$0.029(3)$	$0.057(4)$	$0.003(2)$	$0.004(3)$	$0.008(3)$
N 4	$0.031(3)$	$0.040(3)$	$0.042(3)$	$0.001(3)$	$0.001(3)$	$0.009(3)$
N5	$0.025(3)$	$0.032(3)$	$0.031(3)$	$0.002(2)$	$0.003(2)$	$-0.003(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cs} 1 — \mathrm{~N} 2^{\mathrm{i}}$	$3.225(6)$
$\mathrm{Cs} 1 — \mathrm{~N} 3^{\mathrm{ii}}$	$3.260(6)$
$\mathrm{Cs} 1 — \mathrm{~N} 2^{\mathrm{iii}}$	$3.270(5)$
$\mathrm{Cs} 1 — \mathrm{~N} 4^{\mathrm{iv}}$	$3.301(6)$
$\mathrm{Cs} 1-\mathrm{N} 1$	$3.301(5)$
$\mathrm{Cs} 1-\mathrm{N} 2^{\mathrm{V}}$	$3.341(5)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.329(7)$
$\mathrm{C} 1 — \mathrm{~N} 4$	$1.329(8)$
$\mathrm{C} 1 — \mathrm{~N} 5$	$1.411(8)$

$\mathrm{N} 1-\mathrm{N} 2$	$1.352(7)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.311(8)$
$\mathrm{N} 2-\mathrm{Cs}^{\text {vi }}$	$3.225(6)$
$\mathrm{N} 2-\mathrm{Cs}^{\text {vii }}$	$3.270(5)$
$\mathrm{N} 2-\mathrm{Cs}^{\text {viii }}$	$3.341(5)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.349(8)$
$\mathrm{N} 3-\mathrm{Cs}^{\mathrm{ix}}$	$3.260(6)$
$\mathrm{N} 4-\mathrm{Cs}^{\mathrm{x}}$	$3.301(6)$
$\mathrm{N} 5-\mathrm{N} 5^{\mathrm{xi}}$	$1.252(10)$

supplementary materials

$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{N} 3^{\text {ii }}$	94.82 (14)	N4- $\mathrm{C} 1-\mathrm{N} 5$	118.7 (5)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cs} 1-\mathrm{N} 2{ }^{\text {iii }}$	149.65 (5)	C1-N1-N2	103.4 (5)
$\mathrm{N} 3^{\text {ii }}-\mathrm{Cs} 1-\mathrm{N} 2^{\text {iii }}$	115.02 (14)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cs} 1$	115.6 (4)
$\mathrm{N} 3{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{N} 1^{\text {i }}$	94.53 (14)	N2-N1-Cs1	132.6 (4)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{N} 1^{\text {i }}$	145.48 (14)	N3-N2-N1	109.3 (5)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{N} 4{ }^{\text {iv }}$	102.85 (14)	N3-N2-Cs1 $1^{\text {vi }}$	144.7 (4)
$\mathrm{N} 3{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{N} 4{ }^{\text {iv }}$	70.05 (14)	N1-N2-Cs1 ${ }^{\text {vi }}$	80.2 (3)
$\mathrm{N} 2 \mathrm{iii}-\mathrm{Cs} 1-\mathrm{N} 4{ }^{\text {iv }}$	83.47 (14)	N3-N2-Cs1 ${ }^{\text {vii }}$	82.3 (4)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{N} 1$	68.00 (13)	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cs} 1^{\text {vii }}$	168.2 (4)
$\mathrm{N} 3{ }^{\text {iii }}$-Cs1-N1	135.48 (14)	N3-N2-Cs1 ${ }^{\text {viii }}$	90.3 (4)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{N} 1$	85.81 (13)	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cs} 1^{\text {viii }}$	92.8 (3)
$\mathrm{N} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{N} 1$	74.28 (13)	N2-N3-N4	110.4 (5)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{N} 2^{\mathrm{v}}$	108.58 (7)	N2-N3-Csi ${ }^{\text {ix }}$	157.3 (4)
$\mathrm{N} 3{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{N} 2^{\mathrm{V}}$	77.69 (14)	N4-N3-Cs1 ${ }^{\text {ix }}$	88.4 (4)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{N} 2{ }^{\text {v }}$	84.36 (13)	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{N} 3$	102.9 (5)
$\mathrm{N} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{N} 2{ }^{\text {v }}$	136.31 (13)	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{Cs} 1^{\mathrm{x}}$	113.2 (4)
$\mathrm{N} 1-\mathrm{Cs} 1-\mathrm{N} 2^{\text {v }}$	146.00 (14)	$\mathrm{N} 3-\mathrm{N} 4-\mathrm{Cs} 1^{\mathrm{x}}$	116.4 (4)
N1-C1-N4	113.9 (5)	N5 ${ }^{\text {xi }}-\mathrm{N} 5-\mathrm{C} 1$	114.6 (7)
N1-C1-N5	127.4 (6)		

Fig. 1

Fig. 2

